建立好你的結構模型之後,就可以開始估計和檢驗你的模型了(事實上在實際研究時,通常會有兩步驟來完成結構方程模型的檢驗,第一步是檢驗你的衡量模型也就是measurement model,第二步才是檢驗你的結構模型structural model,在這邊,我們先簡單的說明結構模型的初步操作,讓大家可以很快速的先看到自己的研究結果,有關衡量模型與結構模型的說明,請見另一篇文章: PLS如何運作? ) 第一步是先估計你的研究模型,操作方式非常簡單,只要照著以下的步驟操作,就可以得到結果。 1、選擇演算法 點選功能列中BT按鈕旁的倒三角型(如下圖的地方),點選後會看到下拉選單,請選擇PLS Algorithm。 2、演算法設定,點選後會看到以下畫面 在missing values的部分,有兩種演算法可以選擇,第一種就是目前下面圖片示展現的叫做mean replacement,這種方式是運用同變數的其他樣本平均數來取代遺漏值,建議可採用這種方式, 記得apply missing value algori的核取方塊要打V ,另一種方式叫做case wise replacement,這種方式是當某樣本中有遺漏值的時候,就直接把整筆樣本從分析中拿掉,當然把資料拿掉就代表你會因此刪除掉非常多的資訊和樣本,當然如果你的樣本數量夠多,可以不用單心十幾個樣本被拿掉,但如果你的樣本數不多,像我的樣本是來從台灣千大公司,每一個樣本都很重要,少十個影響很大,所以我會選擇mean replacement來解決遺漏值的問題。 在PLS Algorithm - Settings的部分,Weighting scheme請選擇Path weighting scheme,至於為什麼要選這個,就又是另一個長篇大論,之後再寫文章來說明之。這邊可以引用Hair, J. F., et al. (2013). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), SAGE Publications, Inc. 的書做為參考文獻。再來data metric的部分,使用預設就行了,這邊是將資料做標準化的選項,通常會把資料轉換成標準常態分配,也就是平均數是0,標準差是1的分配,
PLS 和SmartPLS 使用教學懶人包